CS 237: Probability in Computing

Wayne Snyder
Computer Science Department
Boston University

Lecture 19:

- Review: Confidence Intervals
- Hypothesis Testing
- Two-Tailed Tests
- One-Tailed Tests, Upper and Lower
- [If Time] Introduction to the Exponential Distribution

Sampling When the Population Parameters are Unknown

This is the usual case, and there are various solutions (we are only discussing the first two):
(1) (Special Distributions) When the population has a standard deviation which is related to the mean by a formula (e.g., all we studied except the Normal Distribution), you can simply use the formula.
(2) (Large Samples) When the population is large (typically, $\mathrm{n}>30$), by the CLT the distribution of the sample mean is approximately normal, and we use the "sample standard deviation," with $\mathrm{n}-1$ in denominator instead of n .
(3) (Small samples from normal population), when sampling with $\mathrm{n}<=30$ from a population known to be Normal, but with unknown mean and standard deviation, you use the sample standard deviation and a slightly different distribution, called the T-Distribution. (Not covered in CS 237.)
(4) (Small samples not from normal). There are various special "nonparametric" methods for small samples not known to be normal. (Not covered in CS 237.)

Confidence Intervals: Summary of the Procedure for Large Samples

Confidence Intervals Using the Sample Standard Deviation when $\mathbf{n}>30$.
We will use s as the standard deviation of the sample, calculated using Bessel's Correction (divide by n-1):

$$
\begin{gathered}
\text { Sample }=\left\{X_{1}, \cdots, X_{n}\right\} \\
\bar{x}=\frac{X_{1}+\cdots+X_{n}}{n} \\
s^{2}=\frac{\left(X_{1}-\bar{x}\right)^{2}+\cdots+\left(X_{n}-\bar{x}\right)^{2}}{n-1} \\
s=\sqrt{s^{2}} \\
s_{\bar{x}}=\sqrt{\frac{s^{2}}{n}}
\end{gathered}
$$

2. Choose a confidence level CL (e.g., 95%);

Then:

1. Choose a sample size n ;
2. Calculate the multiplier k corresponding to $C L=P\left(\hat{\mu}-\dot{k} \cdot s_{\bar{x}} \leq \bar{x} \leq \mu\right.$
3. Perform random sampling and calculate \bar{x}, \mathbf{s}, and $s_{\bar{x}}$;
4. Report your results using the confidence interval corresponding to CL:
"The mean of the population is $\bar{x} \Psi k \cdot s_{\bar{x}}$ with a confidence of CL."
```
In [3]:
            1 \text { norm.interval(alpha=0.95,loc=0, scale=1)}
Out[3]: (-1.959963984540054, 1.959963984540054)
```


Confidence Intervals Example

Example -- Height of BU Students:

1. Choose a sample size $\mathrm{n}=100$;
2. Choose a confidence level CL $=95.45 \%$;
3. Calculate the multiplier $\mathrm{k}=2$;
4. Perform random sampling of 100 students and calculate $\bar{x}=66.13$ and the sample standard deviation $s=3.45$ inches, and then

$$
s_{\bar{x}}=\frac{3.45}{\sqrt{100}}=0.345
$$

5. Report your results using the confidence interval corresponding to CL:
"The mean height of BU students is $66.13+/-0.69$ inches with a confidence of 95.45\%."

Hypothesis Testing

Hypothesis Testing is a probabalistic version of a Refutation by Counter Example of a mathematical hypothesis, or a Proof by Contradiction.

Example of Refutation by Counter-Example:
Hypothesis: Any number with four occurrences of the digit 1, two occurrences of 4 , two occurrences of 8 , and no occurrences of 2 or 6 , is a prime number.

Refutation: Nope! 1,197,404,531,881 = 1,299,827 * 921,203
Example of Proof by Contradiction:
Theorem: For all integers n, if n^{2} is odd, then n is odd.
Proof: Suppose we assume the negation of the theorem:
Hypothesis: $\exists \mathrm{n}$ such that n^{2} is odd and n is even.
Nope! Because then $\exists \mathrm{k}$ such that $\mathrm{n}=2 \mathrm{k}$ and so $\mathrm{n}^{2}=(2 \mathrm{k})^{2}=4(\mathrm{k})^{2}$ and hence n^{2} is divisible by 2 and even. Therefore, the hypothesis is false, and the theorem (the inverse of the hypothesis) must be true. Q.E.D.

Hypothesis Testing

When we refute a hypothesis probabalistically, instead of showing that is is impossible, we show that the hypothesis is extremely unlikely given the result of our sampling experiment. Here's an example:

Hypothesis: BU students have a mean height of 67 inches.
Now we do our experiment, with $\mathrm{n}=100$, and we find a sample mean of 66.13 inches and a sample standard deviation of 3.45 inches, and so our hypothesis implies that this sample mean should have the following distribution:

But our experiment gives a value of 66.13, which is unlikely! So our hypothesis is very likely to be wrong, and we should reject it. But how to decide? How unlikely is this?

Hypothesis Testing: Two-Sided ("Two-Tailed") Tests

When the extreme values could be in either direction (low or high): your hypothesis could be rejected because it is too low, OR because it is too high.

- BU students have a mean height of 68

- Sam Adams Boston Lager contains
4.75\% alcohol

In this case, you state a Null Hypothesis about the mean of a population X:

$$
\mathrm{H}_{0}=" \mu_{X}=k . " \longleftarrow \text { This is the hypothesis to reject or not. }
$$

And you state (or leave implicit) the Alternative Hypothesis:

$$
\mathbf{H}_{1}=\text { " } \mu_{X}<k \text { or } k<\mu_{X} " \quad \text { or, more simply, } \quad \mathbf{H}_{1}=" \mu_{X} \neq k . "
$$

You Reject H_{0} if your sample mean is much larger or much smaller than k :

$$
\bar{x} \ll k \text { or } \bar{x} \gg k
$$

Hypothesis Testing: Two-Sided ("Two-Tailed") Tests

Hypothesis Two-Sided Test:
Step One: State a Null Hypothesis making a claim about the mean of a population \mathbf{X} :

$$
\left.\mathbf{H}_{0}=" \mu_{X}=k . " \quad \text { (and } \mathbf{H}_{1}=" \mu_{X} \neq k . "\right)
$$

You will either Reject this hypothesis or do nothing (Fail to Reject).
Step Two. Determine how willing you are to be wrong, i.e., define the Level of Significance $\boldsymbol{\alpha}$ of the test:
$\alpha=$ probability you are wrong if you Reject \mathbf{H}_{0} when it is actually correct.
Example:

1. $\quad \mathbf{H}_{0}$: BU students have a mean height of 67 inches $(k=67)$.
2. $\alpha=0.01$ (I am willing to be wrong 1% of the time)

Hypothesis Testing: Two-Tailed Tests

Hypothesis Two-Sided Test:

Step Three. Do the sampling experiment to find a sample mean \bar{x} and the standard deviation of the sampling distribution \mathbf{s}.

Example:
3. We perform the sampling experiment for $\mathrm{n}=100$, and find: $\bar{x}=66.13$ and $\mathrm{s}=$ 3.45.

Hypothesis Testing: Two-Tailed Tests

Hypothesis Two-Sided Test:

Now, at this point, using the hypothesis that the mean should be 67 inches, and the fact that the standard deviation of the sampling distribution is $s=0.345$, according to the hypothesis, we should have a sampling distribution of

$$
\bar{X}=N\left(67,0.345^{2}\right)
$$

The question is, of course, how likely our actual value of 66.13 is under this assumption!

Hypothesis Testing: Two-Tailed Tests

Hypothesis Two-Sided Test:

Step Four: Calculate the p-value of the sample mean \bar{x}, the probability that the random variable \bar{X} would he farther away from k (our hypothesis value for the mean) than \bar{x} is: $P(|\bar{X}-k|>|\bar{x}-k|)$

The p-value is the probability of seeing the value \bar{x} or a value even more unlikely, if H_{0} were true. Because we have a two-tailed test, we have to calculate how far \bar{x} is from the hypothesized value k and multiply by 2 :

$$
2 * P(\bar{X}<\bar{x}) \text { if } \bar{x}<k \quad 2 * P(\bar{X}>\bar{x}) \text { if } \bar{x}>k
$$

Hypothesis Testing: Two-Tailed Tests

Hypothesis Two-Sided Test:

Step Four: Calculate the \mathbf{p}-value of the sample mean \bar{x}, the probability that the random variable \bar{X} would be farther away from k (our hypothesis value for the mean) than \bar{x} is:

$$
P(|\bar{X}-k|>|\bar{x}-k|)
$$

Example: Since $66.123<67$, we calculate the p-value $=0.0117$ from the left side:

```
In [31]: 1 2 * norm.cdf(x=66.13,loc=67,scale=0.345)
Out[31]: 0.01167762737326203
```


Hypothesis Testing: Two-Tailed Tests

Hypothesis Two-Sided Test:

Step Five. If the p-value $<\boldsymbol{\alpha}$, Reject, otherwise Fail to Reject.
Example: Clearly we must Fail to Reject, since $0.0117>0.01$! We can not reject the hypothesis on the basis of the data!

Some things to notice:
(1) If we had set the level of significance at 95%, we would have Rejected! It is important, therefore, to set your parameters before doing the test!
(2) This is precisely the same thing as if we asked "Is 67 inside the 99% confidence interval for our result?" using techniques from last lecture.

Hypothesis Testing: One-Tailed Tests

When the extreme values are considered in one direction only, you have either an Upper One-Tailed Test or a Lower One-Tailed Test:

Example of hypothesis for an Upper One-Tailed Test:

- I claim Richard does not have ESP: his chance of guessing the color of a card I hold hidden from him is 0.5 (if he does much better I'll reject my hypothesis!)

Example of hypothesis for a Lower One-Tailed Test:

- Seagate claims its disk drives last an average of 10,000 hours before failing (if we find the mean is much lower we may reject their claim).

Hypothesis Testing: One-Tailed Tests

One-Tailed: When the extreme values are considered in one direction only, you have either an Upper One-Tailed Test or a Lower One-Tailed Test:

In these cases, you again state a Null Hypothesis about the mean of a population X:

$$
\mathbf{H}_{0}=" \mu_{X}=k . " \longleftarrow \text { This is the hypothesis to reject or not. }
$$

And you state (or leave implicit) the Alternative Hypothesis:

$$
\text { For Lower: } \mathbf{H}_{1}=" \mu_{X}<k " \quad \text { For Upper: } \mathbf{H}_{1}=" k<\mu_{X} "
$$

You Reject H_{0} if your sample mean is very different than k :

$$
\text { For Lower: } \quad \bar{x} \ll k \quad \text { For Upper: } \quad k \ll \bar{x}
$$

[The main difference here is that you don't multiply by 2 when calculating the pvalue.]

Hypothesis Testing: One-Tailed Tests

Hypothesis Upper One-Tailed Test:

1. State a Null Hypothesis which makes a claim about the mean of a population X:

$$
\mathbf{H}_{0}=" \mu_{X}=k . " \quad\left(\text { and } \mathbf{H}_{1}=" k<\mu_{X} "\right)
$$

You will either Reject this hypothesis or do nothing (Fail to Reject).
2. Determine how willing you are to be wrong, i.e., define the Level of Significance α of the test: $\quad \alpha=$ probability you are wrong if you Reject \mathbf{H}_{0} when it is actually correct.
3. Determine a sample size n, take a random sample of size n, and determine the sample mean \bar{x}. Establish the standard deviation, either using the (known) population standard deviation or \bar{x}.e sample standard deviation (more on this later).
4. Calculate the \mathbf{p}-value of the mean \bar{x}, the probability that the random variable X would be larger than $\mathrm{k}: ~ \mathrm{P}(\mathrm{X}>\bar{x})$ The p -value represents the probability of seeing the value \bar{x} or a value even more unlikely (i.e., larger), if H_{0} were true.

Hypothesis Testing: One-Tailed Tests

Hypothesis Lower One-Tailed Test:

1. State a Null Hypothesis which makes a claim about the mean of a population X:

$$
\left.\mathbf{H}_{0}=" \mu_{X}=k . " \quad \text { (and } \mathbf{H}_{1}=" \mu_{X}<\boldsymbol{k} "\right)
$$

You will either Reject this hypothesis or do nothing (Fail to Reject).
2. Determine how willing you are to be wrong, i.e., define the Level of Significance α of the test
$\alpha=$ probability you are wrong if you Reject \mathbf{H}_{0} when it is actually correct.
3. Determine a sample size n, take a random sample of size n, and determine the sample mean \bar{x}. Establish the standard deviation, either using the (known) population standard deviation or the sample standard deviation (more on this later).
4. Calculate the \mathbf{p}-value of the mean \bar{x}, the probability that the random variable X would be smaller than $\bar{x}: \mathrm{P}(\mathrm{X}<\bar{x})$. The p -value represents the probability of seeing the value \bar{x} or a value even more unlikely (i.e., even smaller), if H_{0} were true.

Hypothesis Testing: One-Tailed Tests

Example: Upper One-Tailed Test:

Richard claims that he has ESP. I disagree. My hypothesis is that Richard does not have ESP. The question is whether he can guess correctly much more than half the time, so this is an upper one-tailed test.

To test, I draw 100 cards from a deck (with replacement) and he guesses the color. The level of significance will be 5%.
$\mathrm{H}_{0}=$ "Richard's average number of correct cards is 50 , because he is randomly guessing."
$\mathrm{H}_{1}=$ "Richard will guess many more than 50 correct, because he has ESP."
In the experiment, he gets 54 cards correct.
Note that the best model of this experiment is a Binomial experiment, not Normal. Since this is an upper one-tailed test, the p -value is

$$
P(X \geq 54)=\sum_{i=54}^{100}\binom{100}{i}(0.5)^{i}(0.5)^{100-i}=0.2431 .
$$

Since $0.2431>0.05$, we fail to reject H_{0}.

Hypothesis Testing: One-Tailed Tests

But what if he had guessed 68 of them correctly?

$$
P(X>=68)=0.0002044
$$

Since $0.0002<0.05$, we Reject my hypothesis that Richard does not have ESP, because he did something very, very unlikely!

Hypothesis Testing: One-Tailed Tests

Here is a table of how probable it is that Richard guessed $\geq \mathrm{k}$ cards correctly, if in fact he were simply guessing with probability 0.5 of success; these the " p-values" of the outcome of the test:

```
xbar = 50: 0.460205381306
xbar = 51: 0.382176717201
xbar = 52: 0.308649706795
xbar = 53: 0.242059206804
xbar = 54: 0.184100808663
xbar = 55: 0.135626512037
xbar = 56: 0.0966739522478
xbar = 57: 0.0666053096036
xbar = 58: 0.044313040057
xbar = 59: 0.0284439668205
xbar = 60: 0.0176001001089
xbar = 61: 0.0104893678389
xbar = 62: 0.00601648786268
xbar = 63: 0.00331856025796
xbar = 64: 0.00175882086149
xbar = 65: 0.000894965195743
xbar = 66: 0.000436859918456
xbar = 67: 0.000204388583713
xbar = 68: 9.15716124412e-05
xbar = 69: 3.9250698228e-05
xhar = 70: 1.6n80ก076479n_05
```

Reject at 5\% Level of
Significance
Reject at 1\% Level of
Significant

